منابع مشابه
Repair of clustered uracil DNA damages in Escherichia coli.
Multiply damaged sites (MDS) are defined as greater than/equal to two lesions within 10-15 bp and are generated in DNA by ionizing radiation. In vitro repair of closely opposed base damages > or =2 bp apart results in a double strand break (DSB). This work extends the in vitro studies by utilizing clusters of uracil DNA damage as model lesions to determine whether MDS are converted to DSBs in b...
متن کاملUVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages
UVA (320-400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb...
متن کاملSaccharomyces cerevisiae-based system for studying clustered DNA damages
DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by...
متن کاملCorrelation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion
Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3' or 5' apart from each other, were investigated through 400 ns ex...
متن کاملEfficient repair of abasic sites in DNA by mitochondrial enzymes.
Mutations in mitochondrial DNA (mtDNA) cause a variety of relatively rare human diseases and may contribute to the pathogenesis of other, more common degenerative diseases. This stimulates interest in the capacity of mitochondria to repair damage to mtDNA. Several recent studies have shown that some types of damage to mtDNA may be repaired, particularly if the lesions can be processed through a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2007
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.21.6.lb34-c